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The Vilsmeier formylation has been introduced for the solid-phase functionalization of five different
2-carboxyindoles. The aldehyde functionality has been utilized in the preparation ofO-benzylhydroxyureas.

Introduction

Interest in the application of solid-phase synthesis in drug
research has increased rapidly in the past 5 years.1,2

Undoubtedly, there is a growing need to expand the repertoire
of efficient organic reactions on solid phase.

Usually in combinatorial solid-phase chemistry the aro-
matic ring systems are built from smaller molecules, and
several publications have reported the formation of pyr-
roles,3,4 pyridines,5,6 indoles,7 and other aromatic ring
systems.8 On the other hand, there are only a few examples
where the aromatic systems have been modified directly by
introducing a new functionality to the resin-bound moiety.9-11

Vilsmeier formylation is a classical organic name reac-
tion.12 The reaction was first used only for activated
aromatics and heteroaromatics, but more recently this reac-
tion has shown its compatibility for aliphatic substrates.13

Until today, according to our knowledge, the reaction has
not been used for the modifications of any solid-supported
substrates.

Results and Discussion

In an ongoing project on the modifications of pharma-
ceutically interesting 2-carboxyindoles,14 we needed a ver-
satile functionality at the C-3 position for combinatorial
purposes. As mentioned by Hermkens and Hamersma,15 the
aldehyde group was listed as a functionality suitable for
chemical transformations and for giving access to a new
region in chemical diversity space. We decided to try the
Vilsmeier reaction16 to provide a facile way for introducing
a CHO group to 2-carboxyindoles on solid phase. The
synthetic route and formylating conditions are illustrated in
Scheme 1 and Table 1, respectively.

In all experiments (Table 1) the formylating agent was
prepared in a separate vessel and resins2a-e were added
to the mixture after 20 min with 1,2-dichloroethane. The
reaction time and the equivalents of formylating agent were
kept constant in each attempt (16 h and 10 equiv, respec-
tively). The hydrolysis of the prime product (iminium salt)
was performed with 50% NaOAc in all cases except the
entries where DMF/POCl3 was used as the formylating
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Scheme 1a

a Reagents and conditions: (a) Cs2CO3 or DIPEA, CsI, DMF, 60°C;
(b) see Table 1; (c) NaOMe, THF/MeOH 4:1, room temp.

Table 1. Attempted Reaction Conditions in Our
Experiments

resin formylating agenta conversion2/3b (%) T (°C)

2a POCl3/NMFA 0/100 room temp
2a POCl3/DMF 0/100 60
2a POCl3/NMFA 0/100 60
2b POCl3/DMF 85/15 60
2b POCl3/NMFA 60/40 60
2b POCl3/NMFA 15/85 reflux
2b SOCl2/DMF 90/10 60
2c POCl3/DMF 85/15 60
2c POCl3/NMFA 70/30 60
2c POCl3/NMFA 10/90 reflux
2c SOCl2/DMF 90/10 60
2d POCl3/NMFA 0/100 room temp
2d POCl3/DMF 0/100 room temp
2e POCl3/NMFA 0/100 room temp
2e POCl3/DMF 0/100 room temp
a NMFA: N-methylformanilide. DMF:N,N-dimethylformamide.

b Determined by mass percentages of isolated column-purified
yields.
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complex. In these cases, water was used instead of NaOAc.
Reaction worked smoothly for resins2a, 2d, and 2e
(quantitative conversion at room temperature), but resins2b
and2c needed more drastic conditions (reflux).

The attachment of1a, 1d, and 1e to Merrifield resin
worked well when Cs2CO3 was used as a base. However,
we noticed that1b and 1c were attached to the polymer
through a C-N bond also.17 This was probably due to an
electronic effect of the R substituent. The C-N bond
formation during the attachment was avoided when DIPEA
was used as a base instead of Cs2CO3. The Boc protection18

was also an alternative, but we found it to be much more
convenient to change the attachment conditions.

Next we treated3a with O-benzylhydroxylamine hydro-
chloride or 4-nitro-O-benzylhydroxylamine hydrochloride,
affording 5 or 5′, respectively. Reduction of theO-benzyl-
oxime ether5 and 5′ with a borane-pyridine complex in
the precence of dichloroacetic acid19 gave 6 and 6′. O-
Benzylhydroxylamines6 and6′ were reacted with isocyan-
ates and cleaved20 from the resin, providingO-benzylhy-
droxyureas7′-16′ (Scheme 2, Table 2).

In summary, we have demonstrated that Vilsmeier formyl-
ation is an efficient and simple method for C-C bond
formation on solid support. Although the total yields of six
steps were only moderate (30-75%, calculated on the basis
of the commercially announced loading), the purity of the
compouds were high (>90%). There was no need for
chromatographic purification after cleavage. We are now in
the process of extending our studies toward using different
carboxyindoles, making this route more useful for preparation
of combinatorial libraries.

Experimental Section

General Methods.Reagents were obtained from Aldrich,
and Merrifield resin was purchased from NovaBiochem.

Thin-layer chromatography was performed on 0.25 mm E.
Merck silica gel 60 F254 plates and visualized by UV (254
nm). Purity analyses were performed on an HP 1100 liquid
chromatography system using UV detection (254 nm). NMR
spectra were recorded at 500 MHz for1H and 125 MHz for
13C on a Varian Unity 500 spectrometer, and DMSO-d6 was
used as solvent in all experiments. HRMS data were recorded
on a ZABSPEC-oa TOF/Fisons instrument. After each
reaction step, a small amount of product was cleaved from
the resin and the complete conversion was checked by TLC.

Typical Procedure for 3a. The attachment of1a to
Merrifield resin (commercially announced loading of 0.63
mmol/g) followed the procedure by Frenette and Friesen.19

The derivatized resin2a was washed and dried properly
before the next step. A mixture ofN-methylformanilide
(NMFA) (0.44 mL) and POCl3 (0.33 mL) was stirred for 20
min under nitrogen, providing a yellow solid salt. Resin2a
(0.4 g) was added to the salt, followed by dichloroethane
(DCE, 7 mL). The mixture was stirred overnight at room
temperature. After 16 h, 50% NaOAc solution (3 mL) was
added to the reaction mixture and the slurry was stirred for
2 h at room temperature. After the hydrolysis, resin3a was
filtered and washed with DCE, DMF, DMF/H2O, THF,
MeOH, and DCM and dried.

Typical Procedure for 5. Polymer 3a (0.4 g) was
suspended in 8 mL of pyridine/EtOH (1:1).O-Benzylhy-
droxylamine hydrochloride (0.4 g) was added to the mixture,
and the mixture was stirred overnight at room temperature.
Resin5 was filtered and washed with pyridine, EtOH, DMF,
MeOH, and DCM.

Typical Procedure for 6. Resin5 (0.4 g) was suspended
in DCM (4 mL) and treated with BH3/pyridine (0.35 mL).
The mixture was cooled to 0°C, and dichloroacetic acid
(0.7 mL) was added dropwise. The vessel was capped, and
the mixture was stirred overnight with occasional venting
during the first hour. Resin6 was filtered and washed with
DCM, MeOH, DMF, MeOH, and DCM.

Typical Procedure for 7. Polymer 6 (0.2 g) was sus-
pended in DMF (3 mL), and 3-fluorophenyl isocyanate
(0.145 mL) was added to the mixture. The slurry was stirred
overnight at room temperature. Polymer7 was filtered and
washed with DMF, MeOH, DMF, and DCM.

Typical Procedure for 7′. Polymer 7 (0.2 g) was
suspended in 5 mL of THF/MeOH (4:1). The mixture was
treated with NaOMe (5 mg) and stirred overnight at room
temperature. The resin was filtered and washed with THF
and MeOH. The filtrate was evaporated to dryness, and 10
mL of water was added to the residue. The white powder
was filtered with suction and washed with water. The yield
of 7′ was 31.6 mg (67%).

Data for Compounds 7′-16′. 3-[1-Benzyloxy-3-(3-fluo-
rophenyl)ureidomethyl]-1H-indole-2-carboxylic Acid Meth-
yl Ester (7′). Purity was 93% by HPLC.1H NMR: δ 3.88
(s, 3 H), 4.78 (s, 2 H), 5.36 (s, 2 H), 6.79 (t, 1 H,J ) 8 Hz),
7.05 (t, 1 H,J ) 8 Hz), 7.28 (m, 7 H), 7.45 (m, 2 H), 7.81
(d, 2 H,J ) 8 Hz), 8.89 (s, 1 H), 11.83 (s, 1 H).13C NMR:
δ 40.60, 51.73, 75.74, 106.18 (d,J ) 26 Hz), 108.87 (d,J
) 21 Hz), 112.46, 115.34, 116.99, 120.02, 121.25, 124.97,
125.97 (d,J ) 185 Hz), 127.97, 128.26, 129.36, 129.82 (d,

Scheme 2a

a Reagents and conditions: (a)O-benzylhydroxylamine hydrochloride,
pyridine/EtOH 1:1, room temp; (b) BH3/pyridine, dichloroacetic acid, DCM,
0 °C to room temperature; (c) isocyanates (see Table 2), DMF, room temp;
(d) NaOMe, THF/MeOH 4:1, room temp.
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J ) 10 Hz), 135.14, 136.21, 140.89 (d,J ) 11 Hz), 156.13,
161.06, 162.13, 162.97. HRMS:m/zcalcd for C25H22N3O4F,
447.1594; found, 447.1607.

3-(1-Benzyloxy-3-phenylureidomethyl)-1H-indole-2-car-
boxylic Acid Methyl Ester (8′). Purity was 90% by HPLC.
1H NMR: δ 3.88 (s, 3 H), 4.76 (s, 2 H), 5.34 (s, 2 H), 6.98
(t, 1 H, J ) 7.5 Hz), 7.04 (t, 1 H,J ) 7.5 Hz), 7.28 (m, 8
H), 7.44 (m, 3 H), 7.83 (d, 1 H,J ) 8.5 Hz), 8.63 (s, 1 H),
11.83 (s, 1 H).13C NMR: δ 40.83, 51.72, 75.78, 112.43,
117.19, 119.86, 119.96, 121.37, 122.68, 124.95, 125.20,
126.75, 128.00, 128.24, 128.32, 129.31, 135.30, 136.20,
138.85, 156.47, 162.15. HRMS:m/z calcd for C25H23N3O4,
429.1689; found, 429.1684.

3-[1-Benzyloxy-3-(nitrophenyl)ureidomethyl]-1H-indole-
2-carboxylic Acid Methyl Ester (9′). Purity was 91% by
HPLC. 1H NMR: δ 3.87 (s, 3 H), 4.81 (s, 2 H), 5.38 (s, 2
H), 7.05 (t, 1 H,J ) 7.5 Hz), 7.28 (m, 6 H), 7.44 (d, 1 H,
J ) 8 Hz), 7.52 (t, 1 H,J ) 8 Hz), 7.81 (m, 2 H), 7.91 (d,
1 H, J ) 8 Hz), 8.51 (s, 1 H), 9.25 (s, 1 H), 11.84 (s, 1 H).
13C NMR: δ 40.47, 51.77, 75.71, 112.51, 113.64, 116.88,
116.97, 120.08, 121.15, 125.01, 125.23, 125.72, 126.67,
127.95, 128.24, 129.30, 129.63, 135.09, 136.21, 140.48,
147.80, 156.07, 162.11. HRMS:m/z calcd for C25H22N4O6,
474.1539; found, 474.1541.

3-[1-Benzyloxy-3-(3,5-dichlorophenyl)ureidomethyl]-
1H-indole-2-carboxylic Acid Methyl Ester (10′). Purity was
91% by HPLC.1H NMR: δ 3.87 (s, 3 H), 4.79 (s, 2 H),
5.36 (s, 2 H), 7.06 (t, 1 H,J ) 7 Hz), 7.16 (s, 1 H), 7.28 (m,
6 H), 7.44 (d, 1 H,J ) 8 Hz), 7.63 (d, 2 H,J ) 1.5 Hz),

7.77 (d, 1 H,J ) 8 Hz), 9.08 (s, 1 H), 11.83 (s, 1 H).13C
NMR: δ 40.35, 51.75, 75.70, 112.50, 116.79, 117.49, 120.09,
121.10, 121.50, 125.01, 125.22, 126.65, 127.93, 128.25,
129.33, 133.63, 134.99, 136.20, 141.68, 155.73, 162.09.
HRMS: m/z calcd for C25H21N3O4Cl2, 497.0909; found,
497.0906.

3-[1-Benzyloxy-3-(3-methoxyphenyl)ureidomethyl]-1H-
indole-2-carboxylic Acid Methyl Ester (11′). Purity was
92% by HPLC.1H NMR: δ 3.70 (s, 3 H), 3.88 (s, 3 H),
4.76 (s, 2 H), 5.35 (s, 2 H), 6.56 (dd, 1 H,J ) 8 Hz,J ) 2,5
Hz), 7.06 (m, 2 H), 7.14 (m, 2 H), 7.27 (m, 6 H), 7.44 (d, 1
H, J ) 8 Hz), 7.83 (d, 1 H,J ) 8 Hz), 8.61 (s, 1 H), 11.83
(s, 1 H). 13C NMR: δ 40.82, 51.73, 54.93, 75.79, 105.58,
108.09, 112.08, 112.44, 117.15, 119.98, 121.37, 124.96,
125.22, 126.75, 128.02, 128.26, 129.08, 129.30, 135.31,
136.21, 140.07, 156.37, 159.33, 162.15. HRMS:m/z calcd
for C26H25N3O5, 459.1794; found, 459.1801.

3-[1-Benzyloxy-3-(4-chlorophenyl)ureidomethyl]-1H-in-
dole-2-carboxylic Acid Methyl Ester (12′). Purity was 92%
by HPLC.1H NMR: δ 3.87 (s, 3 H), 4.76 (s, 2 H), 5.34 (s,
2 H), 7.04 (t, 1 H,J ) 7.5 Hz), 7.26 (m, 8 H), 7.43 (d, 1 H,
J ) 8.5 Hz), 7.51 (d, 2 H,J ) 8.5 Hz), 7.80 (d, 1 H,J )
8.5 Hz), 8.82 (s, 1 H), 11.83 (s, 1 H).13C NMR: δ 40.68,
51.73, 75.71, 112.44, 117.05, 119.98, 121.26, 124.96, 125.21,
126.25, 126.70, 127.95, 128.16, 128.23, 129.33, 135.20,
136.19, 137.98, 156.29, 162.12. HRMS:m/z calcd for
C25H22N3O4Cl, 463.1299; found, 463.1299.

3-(3-Benzyl-1-benzyloxyureidomethyl)-1H-indole-2-car-
boxylic Acid Methyl Ester (13′). Purity was 90% by HPLC.

Table 2. Starting Materials, Products, and Yields Summarized
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1H NMR: δ 3.83 (s, 3 H), 4.24 (d, 2 H,J ) 5 Hz), 4.67 (s,
2 H), 5.27 (s, 2 H), 7.01 (t, 1 H,J ) 7 Hz), 7.09 (d, 2 H,J
) 7.5 Hz), 7.24 (m, 9 H), 7.37 (t, 1 H,J ) 6 Hz), 7.43 (d,
1 H, J ) 8 Hz), 7.81 (d, 1 H,J ) 8 Hz), 11.79 (s, 1 H).13C
NMR: δ 41.38, 42.94, 51.62, 75.66, 106.96, 112.306, 117.54,
119.82, 121.70, 124.87, 125.14, 126.37, 126.77, 127.93,
127.98, 128.06, 129.00, 135.46, 136.17, 140.20, 159.42,
162.15. HRMS:m/zcalcd for C26H25N3O4, 443.1845; found,
443.1863.

3-[1-Benzyloxy-3-(3,4-dichlorophenyl)ureidomethyl]-
1H-indole-2-carboxylic Acid Methyl Ester (14′). Purity was
93% by HPLC.1H NMR: δ 3.87 (s, 3 H), 4.78 (s, 2 H),
5.35 (s, 2 H), 7.05 (t, 1 H,J ) 8 Hz), 7.28 (m, 6 H), 7.43
(d, 1 H,J ) 8.5 Hz), 7.49 (m, 2 H), 7.78 (d, 1 H,J ) 8 Hz),
7.83 (d, 1 H,J ) 2 Hz), 9.02 (s, 1 H), 11.83 (s, 1 H).13C
NMR: δ 40.50, 51.73, 75.70, 112.47, 116.87, 119.61, 120.04,
120.65, 121.15, 123.90, 124.98, 125.21, 126.66, 127.92,
128.24, 129.33, 130.14, 130.53, 135.06, 136.19, 139.34,
155.97, 162.09. HRMS:m/z calcd for C25H21N3O4Cl2,
497.0909; found, 497.0916.

3-[3-Benzyl-1-(4-nitrobenzyloxy)ureidomethyl]-1H-in-
dole-2-carboxylic Acid Methyl Ester (15′). Purity was 90%
by HPLC. 1H NMR: δ 3.80 (s, 3 H), 4.23 (d, 2 H,J ) 5
Hz), 4.80 (s, 2 H), 5.24 (s, 2 H), 7.02 (t, 1 H,J ) 7.5 Hz),
7.08 (d, 2 H,J ) 6.5 Hz), 7.23 (m, 4 H), 7.42 (m, 3 H),
7.62 (t, 1 H,J ) 6 Hz), 7.80 (d, 1 H,J ) 8 Hz), 8.05 (d, 2
H, J ) 8.5 Hz), 11.78 (s, 1 H).13C NMR: δ 41.89, 42.93,
51.61, 74.38, 112.30, 117.24, 119.82, 121.62, 122.78, 124.87,
125.08, 126.42, 126.75, 126.84, 127.92, 129.58, 136.13,
140.09, 143.47, 146.91, 159.61, 162.06. HRMS:m/z calcd
for C26H24N4O6, 488.1696; found, 488.1682.

3-[3-(3,4-Dichlorophenyl)-1-(4-nitrobenzyloxy)ureido-
methyl]-1H-indole-2-carboxylic Acid Methyl Ester (16′).
Purity was 90% by HPLC.1H NMR: δ 3.81 (s, 3 H), 4.92
(s, 2 H), 5.32 (s, 2 H), 7.04 (t, 1 H,J ) 7.5 Hz), 7.25 (t, 1
H, J ) 7.5 Hz), 7.40 (d, 1 H,J ) 8.5 Hz), 7.49 (m, 4 H),
7.75 (d, 1 H,J ) 8.5 Hz), 7.84 (d, 1 H,J ) 2 Hz), 8.08 (d,
2 H, J ) 8.5 Hz), 9.20 (s, 1 H), 11.83 (s, 1 H).13C NMR:
δ 40.74, 51.71, 74.63, 112.47, 116.61, 119.80, 120.05,
120.92, 121.06, 122.82, 124.15, 124.99, 125.12, 126.61,
129.65, 130.19, 130.56, 136.14, 139.21, 143.06, 146.97,
156.20, 161.96. HRMS:m/z calcd for C25H20N4O6Cl2,
544.0760; found, 542.0759.
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